
The Psychologist as an Interlocutor in Autism Spectrum 
Disorder Assessment: Insights From a Study of Spontaneous 
Prosody

Daniel Bonea, Chi-Chun Leea, Matthew P. Blacka, Marian E. Williamsb, Sungbok Leea, Pat 
Levittc,d, and Shrikanth Narayanana

aSignal Analysis & Interpretation Laboratory (SAIL), University of Southern California, Los 
Angeles

bUniversity Center for Excellence in Developmental Disabilities, Keck School of Medicine of 
University of Southern California and Children’s Hospital Los Angeles

cKeck School of Medicine of University of Southern California

dChildren’s Hospital Los Angeles

Abstract

Purpose—The purpose of this study was to examine relationships between prosodic speech cues 

and autism spectrum disorder (ASD) severity, hypothesizing a mutually interactive relationship 

between the speech characteristics of the psychologist and the child. The authors objectively 

quantified acoustic-prosodic cues of the psychologist and of the child with ASD during 

spontaneous interaction, establishing a methodology for future large-sample analysis.

Method—Speech acoustic-prosodic features were semiautomatically derived from segments of 

semistructured interviews (Autism Diagnostic Observation Schedule, ADOS; Lord, Rutter, 

DiLavore, & Risi, 1999; Lord et al., 2012) with 28 children who had previously been diagnosed 

with ASD. Prosody was quantified in terms of intonation, volume, rate, and voice quality. 

Research hypotheses were tested via correlation as well as hierarchical and predictive regression 

between ADOS severity and prosodic cues.

Results—Automatically extracted speech features demonstrated prosodic characteristics of 

dyadic interactions. As rated ASD severity increased, both the psychologist and the child 

demonstrated effects for turn-end pitch slope, and both spoke with atypical voice quality. The 

psychologist’s acoustic cues predicted the child’s symptom severity better than did the child’s 

acoustic cues.

Conclusion—The psychologist, acting as evaluator and interlocutor, was shown to adjust his or 

her behavior in predictable ways based on the child’s social-communicative impairments. The 

results support future study of speech prosody of both interaction partners during spontaneous 
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conversation, while using automatic computational methods that allow for scalable analysis on 

much larger corpora.

Keywords

autism spectrum disorder; children; prosody; social communication; assessment; dyadic 
interaction

Human social interaction necessitates that each participant continually perceive, plan, and 

express multimodal pragmatic and affective cues. Thus, a person’s ability to interact 

effectively may be compromised when there is an interruption in any facet of this 

perception–production loop. Autism spectrum disorder (ASD) is a developmental disorder 

defined clinically by impaired social reciprocity and communication—jointly referred to as 

social affect (Gotham, Risi, Pickles, & Lord, 2007)—as well as by restricted, repetitive 

behaviors and interests (American Psychiatric Association, 2000).

Speech prosody—which refers to the manner in which a person utters a phrase to convey 

affect, mark a communicative act, or disambiguate meaning—plays a critical role in social 

reciprocity. A central role of prosody is to enhance communication of intent and, thus, 

enhance conversational quality and flow. For example, a rising intonation can indicate a 

request for response, whereas a falling intonation can indicate finality (Cruttenden, 1997). 

Prosody can also be used to indicate affect (Juslin & Scherer, 2005) or attitude (Uldall, 

1960). Furthermore, speech prosody has been associated with social-communicative 

behaviors such as eye contact in children (Furrow, 1984).

Atypical prosody has been regularly reported in individuals with ASD. Furthermore, 

atypical prosody is relevant to certain overarching theories on ASD—for example, impaired 

theory of mind (Baron-Cohen, 1988; Frith, 2001; Frith & Happé, 2005; McCann & Peppe, 

2003). Specifically, inability to gauge the mental state of an interlocutor may be due to 

impairments in perception of prosody, which in turn may create challenges for producing 

appropriate prosodic functions. Many studies have investigated receptive and expressive 

language skills in autism (e.g., Boucher, Andrianopoulos, Velleman, Keller, & Pecora, 2011; 

Paul, Augustyn, Klin, & Volkmar, 2005). Tested theories include the speech attunement 

framework (Shriberg, Paul, Black, & van Santen, 2011)—which decomposes production–

perception processes into “tuning in” to learn from the environment and “tuning up” one’s 

own behavior to a level of social appropriateness—as well as disrupted speech planning and 

atypical motor system function such as that seen in childhood apraxia of speech (American 

Speech-Language-Hearing Association, 2007a, 2007b). Given the complexity of developing 

speech, it is not surprising that the mechanisms through which atypical prosody occurs in 

children with ASD remain unclear.

Atypical Prosody in ASD

Qualitative descriptions of prosodic abnormalities appear throughout the ASD literature, but 

contradictory findings are common, and the specific features of prosody measured are not 

always well defined (McCann & Peppe, 2003), a testament to both their relevance and the 

challenges in standardizing prosodic assessment. For example, pitch range has been reported 
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as both exaggerated and monotone in individuals with ASD (Baltaxe, Simmons, & Zee, 

1984). Characterization of prosody is also incorporated within the widely used diagnostic 

instruments, the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 1999, 2012) 

and the Autism Diagnostic Interview—Revised (ADI–R; Rutter, LeCouteur, & Lord, 2003). 

The ADOS considers any of the following qualities to be characteristic of speech associated 

with ASD: “slow and halting; inappropriately rapid; jerky and irregular in rhythm … odd 

intonation or inappropriate pitch and stress, markedly flat and toneless … consistently 

abnormal volume” (Lord et al., 1999, Module 3, p. 6), and the ADI–R prosody item focuses 

on the parent’s report of unusual characteristics of the child’s speech, with specific probes 

regarding volume, rate, rhythm, intonation, and pitch. A variety of markers can contribute to 

a perceived oddness in prosody such as differences in pitch slope (Paccia & Curcio, 1982), 

atypical voice quality (Sheinkopf, Mundy, Oller, & Steffens, 2000), and nasality (Shriberg et 

al., 2001). This inherent variability and subjectivity in characterizing prosodic abnormalities 

poses measurement challenges.

Researchers have used structured laboratory tasks to assess prosodic function more precisely 

in children with ASD. Such studies have shown, for instance, that both sentential stress 

(Paul, Shriberg, et al., 2005) and contrastive stress (Peppe, McCann, Gibbon, O’Hare, & 

Rutherford, 2007) differed in children with ASD compared with typical peers. Peppe et al. 

(2007) developed a structured prosodic screening profile that requires individuals to respond 

to computerized prompts; observers rate the expressive prosody responses for accuracy in 

terms of delivering meaning. However, as Peppe (2011) remarked, the instrument “provides 

no information about aspects of prosody that do not affect communication function in a 

concrete way, but may have an impact on social functioning or listenability … such as 

speech-rhythm, pitch-range, loudness and speech-rate” (p. 18).

In order to assess these global aspects of prosody that are thought to differ in individuals 

with atypical social functioning, researchers have used qualitative tools to evaluate prosody 

along dimensions such as phrasing, rate, stress, loudness, pitch, laryngeal quality, and 

resonance (Shriberg, Austin, Lewis, McSweeny, & Wilson, 1997; Shriberg et al., 2001, 

2010). Although these methods incorporate acoustic analysis with software in addition to 

human perception, intricate human annotation is still necessary. Methods that rely on human 

perception and annotation of each participant’s data are time intensive, limiting the number 

of participants that can be efficiently studied. Human annotation is also prone to reliability 

issues, with marginal to inadequate reliability found for item-level scoring of certain 

prosody voice codes (Shriberg et al., 2001). Therefore, automatic computational analysis of 

prosody has the potential to be an objective alternative or complement to human annotation 

that is scalable to large data sets—an appealing proposition given the wealth of spontaneous 

interaction data already collected by autism researchers.

Transactional Interactions and ASD

In addition to increased understanding of the prosody of children with autism, this study 

paradigm allows careful examination of prosodic features of the psychologist as a 

communicative partner interacting with the child. Synchronous interactions between parents 

and children with ASD have been found to predict better long-term outcomes (Siller & 
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Sigman, 2002), and many intervention approaches include an element of altering the adult’s 

interactions with the child with ASD to encourage engaged, synchronous interactions. For 

example, in the social communication, emotional regulation, and transactional support 

(SCERTS) model, parents and other communication partners are taught strategies to “attune 

affectively and calibrate their emotional tone to that of the less able partner” (Prizant, 

Wetherby, Rubin, & Laurent, 2003, p. 308). Changes in affective communication and 

synchrony of the caregiver or interventionist with the child are also elements used in pivotal 

response training (e.g., Vernon, Koegel, Dauterman, & Stolen, 2012), DIR/Floortime (e.g., 

Weider & Greenspan, 2003), and the Early Start Denver Model (Dawson et al., 2010). The 

behavior of one person in a dyadic interaction generally depends intricately on the other 

person’s behavior—evidenced in the context provided by age, gender, social status, and 

culture of the participants (Knapp & Hall, 2009) or the behavioral synchrony that occurs 

naturally and spontaneously in human–human interactions (Kimura & Daibo, 2006). Thus, 

we investigated the psychologist’s acoustic-prosodic cues in an effort to understand the 

degree to which the interlocutor’s speech behavior varies based on interaction with 

participants of varying social-affective abilities.

Current Study Goals and Rationale

Because precise characterization of the global aspects of prosody for ASD has not been 

established (Diehl, Watson, Bennetto, McDonough, & Gunlogson, 2009; Peppe et al., 2007), 

the current study presents a strategy to obtain a more objective representation of speech 

prosody through signal processing methods that quantify qualitative perceptions. This 

approach is in contrast to experimental paradigms of constrained speaking tasks with manual 

annotation and evaluation of prosody by human coders (Paul, Shriberg, et al., 2005; Peppe et 

al., 2007). Furthermore, previous studies have been limited primarily to the analysis of 

speech of children with high-functioning autism (HFA) out of the context in which it was 

produced (Ploog, Banerjee, & Brooks, 2009). Although clinical heterogeneity may explain 

some conflicting reports regarding prosody in the literature, analysis of more natural 

prosody through acoustic measures of spontaneous speech in interactive communication 

settings has the potential to contribute to better characterization of prosody in children with 

ASD.

The present study analyzed speech segments from spontaneous interactions between a child 

and a psychologist that were recorded during standardized observational assessment of 

autism symptoms using the ADOS. The portions of the assessment that were examined 

represent spontaneous interaction that is constrained by the introspective topics and 

interview style. Spontaneous speech during the ADOS assessment has been shown to be 

valid for prosodic analysis (Shriberg et al., 2001).

Prosody is characterized in terms of the global dynamics of intonation, volume, rate, and 

voice quality. Regarding potential acoustically derived correlates of perceived abnormalities 

in these speech segments, few studies offer suggestions (Diehl et al., 2009; van Santen, 

Prud’hommeaux, Black, & Mitchell, 2010), and even fewer have additionally assessed 

spontaneous speech (Shriberg et al., 2011). As such, the current study proposes a set of 

acoustic-prosodic features to represent prosody in child–psychologist dialogue.
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A crucial aim of this work was to incorporate analysis of the acoustic-prosodic 

characteristics of a psychologist engaged in ADOS administration rather than to focus only 

on the child’s speech. This transactional, dyadic focus provides an opportunity to discern the 

adaptive behavior of the psychologist in the context of eliciting desired responses from each 

child and to examine possible prosodic attunement between the two participants.

Some researchers have called for a push toward both dimensional descriptions of behavior 

and more valid and reliable ways to quantify such behavior dimensions (e.g., Lord & Jones, 

2012). This work—part of the emerging field of behavioral signal processing (BSP; 

Narayanan & Georgiou, 2013)—attempts to address these goals. For instance, such 

computational approaches have lent quantitative insight into processes such as prosodic 

entrainment between interacting dyads and affectivity patterns (Lee et al., 2014). The co-

variation between continuous behavioral descriptors of speech prosody and dimensional 

ratings of social-affective behavior is investigated in the present article. Given the apparent 

continuum of phenotypic behavior, correlational analysis using ordinal-scale behavior 

ratings may prove invaluable toward effective stratification that supports further study (e.g., 

genetic research).

This article provides a more detailed analysis than was documented in a previous report on 

spontaneous prosody during the ADOS (Bone, Black, et al., 2012). The overarching goal is 

to develop a framework for large-sample analysis of prosody, in a dyadic setting, by using 

semiautomatic computational methods. The validation of the strategy to perform large-scale 

analysis of natural speech data between clinician and child has the potential to provide 

greater insight for developing more effective ASD interventions. The specific aims 

addressed in the present study include (a) demonstration of the feasibility of semiautomatic 

computational analysis of specific, perceptually inspired acoustic-prosodic elements of 

speech during naturalistic conversational interchange in children with ASD; (b) exploration 

of the relationship between prosodic features in the speech of children with ASD and those 

of the psychologist interlocutors; (c) exploration of the relationship between children’s 

autism symptom severity and the prosodic features of their speech; and (d) exploration of 

the relationship between children’s autism symptom severity and the prosodic features of the 

psychologist during interaction with each child. We hypothesized that the psychologist’s 

prosody and the child’s prosody would vary depending on the level of severity of ASD 

symptoms of each child.

Method

The research design and method was approved by the institutional review boards of 

Children’s Hospital Los Angeles and the University of Southern California, and written 

informed consent was obtained from the parents of all participants. Exclusion criteria 

included severe sensory or motor impairment, neurodevelopmental disorders of known 

etiology (Rett syndrome, tuberous sclerosis, Down syndrome, phenylketonuria, 22Q deletion 

syndrome, fragile X syndrome, and neurofibromatosis), gestational age of less than 36 or 

greater than 42 weeks, and birth weight less than 2,500 g.
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Participants

Participants were recruited as part of a larger study of children with ASD, with or without 

co-occurring medical conditions. The present study included 28 children without a 

diagnosed or parent-reported medical condition, ranging in age from 5.8 to 14.7 years (M = 

9.8, SD = 2.5). Of the 28 participants, 22 (79%) were male, six (21%) were female, 20 

(71%) were Hispanic, and eight (29%) were White, Non-Hispanic. Parents were asked to 

report the child’s primary or first language. The first languages of the 28 participants were 

English (15 children, 54%), Spanish (nine children, 32%), and both English and Spanish 

(four children, 14%).

These data are a subset of the USC Center for Autism Research in Engineering (CARE) 

Corpus (Black et al., 2011). The behavioral data were collected as a part of a larger genetic 

study for which the ADOS was administered to confirm the ASD diagnosis. Age for 

inclusion was 5–17 years, and for this sample, prior diagnosis of an autism spectrum 

disorder by a professional in the community was required. All verbally fluent children from 

the larger study were included in this sample, determined on the basis of the psychologist’s 

decision to administer Module 3 of the ADOS (see the first subsection in the Measures 

section below).

Confirmation of autism diagnosis was established by the psychologist on the basis of ADOS 

scores, any input provided by the parent during the assessment, and review of available 

records of the previous diagnosis. In this sample, 17 (61%) of the participants had a 

confirmed diagnosis of autism on the ADOS, five (18%) had a diagnosis of ASD but not full 

autism, and six (21%) scored below the cutoff for ASD on the ADOS—meaning that they 

were deemed to not have ASD.

Children whose parent(s) spoke primarily Spanish were assessed by a bilingual (Spanish/

English) psychologist, and children had the option to respond in Spanish or to request 

Spanish interactions if they felt more comfortable conversing in Spanish. This sample 

includes only children who chose to participate in the assessment in English; one participant 

was excluded from this analysis due to a primarily Spanish discourse. Another participant 

was excluded due to nominal vocal activity (verbal or nonverbal) during the assessment, 

which furthermore was muffled and unintelligible.

In addition to speech data from children, this study includes speech data from the three 

licensed psychologists who administered the ADOS for the genetic study. All three 

psychologists were women, and all were research-certified in the ADOS and had extensive 

clinical experience working with children with ASD. Two psychologists were bilingual in 

English and Spanish; one was a native Spanish speaker who was also fluent in English.

Measures

ADOS—The ADOS was administered by one of three psychologists with research 

certification in the measure. The ADOS is a standardized assessment of autism symptoms 

conducted through a series of activities designed to elicit a sample of communication, social 

interaction, play, and other behaviors. The ADOS is designed with different modules, 

chosen based primarily on the child’s level of expressive language. The present study 
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includes participants who were administered only Module 3, designed for children with 

fluent speech, defined according to the ADOS manual as speech that includes “a range of 

flexible sentence types, providing language beyond the immediate context, and describing 

logical connections within a sentence” (Lord et al., 1999, p. 5). In order to identify the 

child’s level of verbal fluency, the administering psychologist followed a three-step process. 

First, the parent answered a series of questions about the child’s language level by telephone 

prior to the session. Next, the psychologist interacted with the child in the clinic while the 

research assistant was obtaining informed consent to further confirm the child’s level of 

verbal fluency. If the child spoke in complete utterances during this interaction, the 

psychologist proceeded with administering Module 3. The psychologist then continued to 

assess the child’s verbal fluency during the first 10 min of the ADOS session. Following the 

standard ADOS protocol, the psychologist changed modules after the first part of the 

assessment if the child’s expressive language did not fit the definition of fluent speech in the 

ADOS manual required for Module 3. For this study, only participants who were 

administered Module 3 were included. Formal language assessment was not conducted as 

part of the larger study, so data about the relative language skills of the participants could 

not be presented.

All ADOS evaluations were audio and video recorded. The evaluations took place in a 

single, multi-use clinical room. A portable recording setup was used, with all sensors 

operating in the far-field to maintain diagnostic validity. Far-field refers to the extended 

distance of the sensors to the target; in our case, the high-quality microphones and cameras 

were roughly 2 m from the participants. Two Sony HDR-SR12 High-Definition Handycam 

camcorders were mounted on tripods in two corners of the room. Additional audio 

recordings were collected from two high-quality directional shotgun microphones 

(SCHOEPS CMIT 5 U), which were mounted next to the camcorders. The uncompressed 

audio was captured with an Edirol R-4 Pro recorder (48 kHz, 24 bit). This study analyzed 

down-sampled audio (16 kHz) from a single channel of one high-quality microphone, 

chosen on the basis of perceived quality of the recordings.

Targeted ADOS Activities—The speech samples for the present study were obtained 

from two of the standard ADOS activities: (a) Emotions and (b) Social Difficulties and 

Annoyance. These activities were selected because each offers a continuous sampling of 

conversational speech, rich with emotionally focused content pertinent to ASD diagnosis. A 

child with ASD may be less comfortable communicating about these particular topics than 

their typically developing peers, which should be noted during interpretation of results. 

Because the conversational style of these two subtasks is rather constrained, such 

apprehension may be implicitly captured by the automatic measures. From the start of the 

first selected activity (usually Emotions, although, during standard ADOS administration, 

the assessor can change the order of administration of activities to maintain rapport), we 

collected up to 5 min per session for analysis (minimum = 101 s, M = 264 s, SD = 8.4 s). 

Because there is variability in the duration of analyzed data across subjects, all extracted 

speech features were designed to be independent of the duration of the data (i.e., robust 

statistics, such as medians and interquartile ratios, were used).
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ASD Severity—ADOS Module 3 includes 28 codes scored by the examiner immediately 

following the assessment. The diagnostic algorithm consists of a subset of the codes used to 

determine if the child’s scores exceed the cutoffs typical of children with autism in the 

standardization group for the measure. For this analysis, we used the revised algorithms 

(Gotham et al., 2007) rather than the original ADOS algorithm because the revised 

algorithms are based on more extensive research regarding the codes that best differentiate 

children with ASD from typically developing children. Algorithm scores were then 

converted to an autism symptom severity score, following the recommendation of Gotham, 

Pickles, and Lord (2009). The dependent variable in this study was the severity score, which 

is based on the Social Affect and Restricted, Repetitive Behaviors factors in the revised 

ADOS diagnostic algorithm and the severity scale that is used for normalization across 

modules and age (Gotham et al., 2009).

ADOS severity was analyzed instead of the atypical prosody ADOS code, Speech 

Abnormalities Associated With Autism, for three reasons: (a) Atypical prosody is difficult to 

describe and relies on subjective interpretation of multiple factors; (b) atypical prosody in 

the ADOS is coded on a low-resolution three-point scale; and (c) the atypical prosody 

ADOS code is highly correlated with overall ADOS severity—in our data set of interest, 

rs(26) = 0.73, p < .001.1

Prosodic Quantification—A primary goal of this study was to capture disordered 

prosody by direct speech-signal-processing techniques in such a way that it may scale more 

readily than full-hand annotation. Twenty-four features (number of each type denoted 

parenthetically) were extracted that address four key areas of prosody relevant to ASD: pitch 

(6), volume (6), rate (4), and voice quality (8). These vocal features were designed through 

referencing linguistic and engineering perceptual studies in order to capture the qualitatively 

described disordered prosody reported in the ASD literature. The features are detailed in the 

subsections that follow. In order to determine whether meaningful variations in the 

psychologist’s voice corresponded to the child’s behaviors, we also extracted the same 

prosodic features from the psychologist’s speech. The signal analysis used here can be 

considered semiautomatic because it takes advantage of manually derived text transcripts for 

accurate automatic alignment of the text to the audio, as described next.

Text-to-speech alignment: A necessary objective of this study was to appropriately model 

the interaction with meaningful vocal features for each participant. For many of the acoustic 

parameters that we extracted, it was necessary to understand when each token (word or 

phoneme) was uttered within the acoustic waveform. For example, detecting the start and 

end times of words allows for the calculation of syllabic speaking rate, and the detection of 

vowel regions allows for the computation of voice quality measures. Manual transcription at 

this fine level is not practical or scalable for such a large corpus; thus, we relied on computer 

speech-processing technologies. Because a lexical-level transcription was available with the 

1This correlation was also calculated on the much larger, distinct Autism Genetic Resource Exchange (AGRE; Geschwind et al., 
2001) database and was again found to be significant, but with medium effect size, rs(1139) = 0.48, p < .001. The AGRE Module 3 
phenotypic data that we used were downloaded on April 6, 2013. The data comprised 1,143 subjects with a mean age of 9.5 years (σ= 
3.0 years). Two of the 1,143 subjects were excluded for missing ADOS code data, leaving 1,141 subjects for analysis. The ADOS 
diagnoses for these data were as follows: non-ASD = 170, ASD = 119, and autism = 919.
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audio (text transcript), we used the well-established method of automatic forced alignment 

of text to speech (Katsamanis, Black, Georgiou, Goldstein, & Narayanan, 2011).

The sessions were first manually transcribed through use of a protocol adapted from the 

Systematic Analysis of Language Transcripts (SALT; Miller & Iglesias, 2008) transcription 

guidelines and were segmented by speaker turn (i.e., the start and end times of each 

utterance in the acoustic waveform). The enriched transcription included partial words, 

stuttering, fillers, false starts, repetitions, nonverbal vocalizations, mispronunciations, and 

neologisms. Speech that was inaudible due to background noise was marked as such. In this 

study, speech segments that were unintelligible or that contained high background noise 

were excluded from further acoustic analysis.

With the lexical transcription completed, we then performed automatic phonetic forced 

alignment to the speech waveform using the HTK software (Young, 1993). Speech 

processing applications require that speech be represented by a series of acoustic features. 

Our alignment framework used the standard Mel-frequency cepstral coefficient (MFCC) 

feature vector, a popular signal representation derived from the speech spectrum, with 

standard HTK settings: 39-dimensional MFCC feature vector (energy of the signal + 12 

MFCCs, and first- and second-order temporal derivatives), computed over a 25-ms window 

with a 10-ms shift. Acoustic models (AMs) are statistical representations of the sounds 

(phonemes) that make up words, based on the training data. Adult-speech AMs (for the 

psychologist’s speech) were trained on the Wall Street Journal Corpus (Paul & Baker, 

1992), and child-speech AMs (for the child’s speech) were trained on the Colorado 

University (CU) Children’s Audio Speech Corpus (Shobaki, Hosom, & Cole, 2000). The 

end result was an estimate of the start and end time of each phoneme (and, thus, each word) 

in the acoustic waveform.

Pitch and volume: Intonation and volume contours were represented by log-pitch and vocal 

intensity (short-time acoustic energy) signals that were extracted per word at turn-end using 

Praat software (Boersma, 2001). Pitch and volume contours were extracted only on turn-end 

words because intonation is most perceptually salient at phrase boundaries; in this work, we 

define the turn-end as the end of a speaker utterance (even if interrupted). In particular, turn-

end intonation can indicate pragmatics such as disambiguating interrogatives from 

imperatives (Cruttenden, 1997), and it can indicate affect because pitch variability is 

associated with vocal arousal (Busso, Lee, & Narayanan, 2009; Juslin & Scherer, 2005). 

Turn-taking in interaction can lead to rather intricate prosodic display (Wells & MacFarlane, 

1998). In this study, we examined multiple parameters of prosodic turn-end dynamics that 

may shed some light on the functioning of communicative intent. Future work could view 

complex aspects of prosodic functions through more precise analyses.

In this work, several decisions were made that may affect the resulting pitch contour 

statistics. Turns were included even if they contained overlapped speech, provided that the 

speech was intelligible. Thus, overlapped speech presented a potential source of 

measurement error. However, no significant relation was found between percentage overlap 

and ASD severity (p = 0.39), indicating that this may not have significantly affected results. 

Furthermore, we took an additional step to create more robust extraction of pitch. Separate 
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audio files were made that contained only speech from a single speaker (using transcribed 

turn boundaries); audio that was not from a target speaker’s turns was replaced with 

Gaussian white noise. This was done in an effort to more accurately estimate pitch from the 

speaker of interest in accordance with Praat’s pitch-extraction algorithm. Specifically, Praat 

uses a postprocessing algorithm that finds the cheapest path between pitch samples, which 

can affect pitch tracking when speaker transitions are short.

We investigated the dynamics of this turn-end intonation because the most interesting social 

functions of prosody are achieved by relative dynamics. Further, static functionals such as 

mean pitch and vocal intensity may be influenced by various factors unrelated to any 

disorder. In particular, mean pitch is affected by age, gender, and height, whereas mean 

vocal intensity is dependent on the recording environment and a participant’s physical 

positioning. Thus, in order to factor variability across sessions and speakers, we normalized 

log-pitch and intensity by subtracting means per speaker and per session (see Equations 1 

and 2). Log-pitch is simply the logarithm of the pitch value estimated by Praat; log-pitch 

(rather than linear pitch) was evaluated because pitch is log-normally distributed, and log-

pitch is more perceptually relevant (Sonmez et al., 1997). Pitch was extracted with the 

autocorrelation method in Praat within the range of 75–600 Hz, using standard settings apart 

from minor empirically motivated adjustments (e.g., the octave jump cost was increased to 

prevent large frequency jumps):

(1)

and

(2)

In order to quantify dynamic prosody, a second-order polynomial representation of turn-end 

pitch and vocal intensity was calculated that produced a curvature (2nd coefficient), slope 

(1st coefficient), and center (0th coefficient). Curvature measured rise–fall (negative) or 

fall–rise (positive) patterns; slope measured increasing (positive) or decreasing (negative) 

trends; and center roughly measured the signal level or mean. However, all three parameters 

were simultaneously optimized to reduce mean-squared error and, thus, were not exactly 

representative of their associated meaning. First, the time associated with an extracted 

feature contour was normalized to the range [−1,1] to adjust for word duration. An example 

parameterization is given in Figure 1 for the word drives. The pitch had a rise–fall pattern 

(curvature = −0.11), a general negative slope (slope = −0.12), and a positive level (center = 

0.28).

Medians and interquartile ratios (IQRs) of the word-level polynomial coefficients 

representing pitch and vocal intensity contours were computed, totaling 12 features (2 

Functionals × 3 Coefficients × 2 Contours). Median is a robust analogue of mean, and IQR 

is a robust measure of variability; functionals that are robust to outliers are advantageous, 

given the increased potential for outliers in this automatic computational study.

Bone et al. Page 10

J Speech Lang Hear Res. Author manuscript; available in PMC 2015 February 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Rate: Speaking rate was characterized as the median and IQR of the word-level syllabic 

speaking rate in an utterance—done separately for the turn-end words—for a total of four 

features. Separating turn-end rate from non-turn-end rate enabled detection of potential 

affective or pragmatic cues exhibited at the end of an utterance (e.g., the psychologist could 

prolong the last word in an utterance as part of a strategy to engage the child). Alternatively, 

if the speaker were interrupted, the turn-end speaking rate might appear to increase, 

implicitly capturing the interlocutor’s behavior.

Voice quality: Perceptual depictions of odd voice quality have been reported in studies of 

children with autism, having a general effect on the listenability of the children’s speech. 

For example, children with ASD have been observed to have hoarse, harsh, and hypernasal 

voice quality and resonance (Pronovost, Wakstein, & Wakstein, 1966). However, interrater 

and intrarater reliability of voice quality assessment can vary greatly (Gelfer, 1988; 

Kreiman, Gerratt, Kempster, Erman, & Berke, 1993). Thus, acoustic correlates of atypical 

voice quality may provide an objective measure that informs the child’s ASD severity. 

Recently, Boucher et al. (2011) found that higher absolute jitter contributed to perceived 

“overall severity” of voice in spontaneous-speech samples of children with ASD. In this 

study, voice quality was captured by eight signal features: median and IQR of jitter, 

shimmer, cepstral peak prominence (CPP), and harmonics-to-noise ratio (HNR).

Jitter and shimmer measure short-term variation in pitch period duration and amplitude, 

respectively. Higher values for jitter and shimmer have been linked to perceptions of 

breathiness, hoarseness, and roughness (McAllister, Sundberg, & Hibi, 1998). Although 

speakers may hardly control jitter or shimmer voluntarily, it is possible that spontaneous 

changes in a speaker’s internal state are indirectly responsible for such short-term 

perturbations of frequency and amplitude characteristics of the voice source activity. As 

reference, jitter and shimmer have been shown to capture vocal expression of emotion, 

having demonstrable relations with emotional intensity and type of feedback (Bachorowski 

& Owren, 1995) as well as stress (Li et al., 2007). In addition, whereas jitter and shimmer 

are typically only computed on sustained vowels when assessing dysphonia, jitter and 

shimmer are often informative of human behavior (e.g., emotion) in automatic 

computational studies of spontaneous speech; this is evidenced by the fact that jitter and 

shimmer are included in the popular speech processing tool kit openSMILE (Eyben, 

Wöllmer, & Schuller, 2010). In this study, modified variants of jitter and shimmer were 

computed that did not rely on explicit identification of cycle boundaries. Equation 3 shows 

the standard calculation for relative, local jitter, where T is the pitch period sequence and N 

is the number of pitch periods; the calculation of shimmer was similar and corresponded to 

computing the average absolute difference in vocal intensity of consecutive periods. In our 

study, smoothed, longer-term measures were computed by taking pitch period and amplitude 

samples every 20 ms (with a 40-ms window); the pitch period at each location was 

computed from the pitch estimated using the autocorrelation method in Praat. Relative, local 

jitter and shimmer were calculated on vowels that occurred anywhere in an utterance:
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(3)

CPP and HNR are measures of signal periodicity (whereas jitter is a measure of signal 

aperiodicity) that have also been linked to perceptions of breathiness (Hillenbrand, 

Cleveland, & Erickson, 1994) and harshness (Halberstam, 2004). For sustained vowels, 

percent jitter can be equally effective in measuring harshness as CPP in sustained vowels 

(Halberstam, 2004); however, CPP was even more informative when utilized on continuous 

speech. Heman-Ackah et al. (2003) found that CPP provided somewhat more robust 

measures of overall dysphonia than did jitter, when using a fixed-length windowing 

technique on read speech obtained at a 6-in. mouth-to-microphone distance. Because we 

worked with far-field (approximately 2-m mouth-to-microphone distance) audio recordings 

of spontaneous speech, voice quality measures may have been less reliable. Thus, we 

incorporated all four descriptors of voice quality, totaling eight features. We calculated HNR 

(for 0–1500 Hz) and CPP using an implementation available in VoiceSauce (Shue, Keating, 

Vicenik, & Yu, 2010); the original method was described in Hillenbrand et al. (1994) and 

Hillenbrand and Houde (1996). Average CPP was taken per vowel. Then, median and IQR 

(variability) of the vowel-level measures were computed per speaker as features (as done 

with jitter and shimmer).

Additional features: The style of interaction (e.g., who is the dominant speaker or the 

amount of overlap) may be indicative of the child’s behavior. Thus, we extracted four 

additional proportion features that represented disjoint segments of each interaction: (a) the 

fraction of the time in which the child spoke and the psychologist was silent, (b) the fraction 

of the time in which the psychologist spoke and the child was silent, (c) the fraction of the 

time that both participants spoke (i.e., “overlap”), and (d) the fraction of the time in which 

neither participant spoke (i.e., “silence”). These features were examined only in an initial 

statistical analysis.

Statistical Analysis

Spearman’s nonparametric correlation between continuous speech features and the discrete 

ADOS severity score was used to establish significance of relationships. Pearson’s 

correlation was used when comparing two continuous variables. The statistical significance 

level was set at p < .05. However, for the reader’s consideration, we sometimes report p 

values that did not meet this criterion but that, nonetheless, may represent trends that would 

be significant with a larger sample size (i.e., p < .10). In addition, underlying variables (e.g., 

psychologist identity, child age and gender, and signal-to-noise ratio [SNR; defined later in 

this paragraph]) were often controlled by using partial correlation in an effort to affirm 

significant correlations. SNR is a measure of the speech-signal quality affected by recording 

conditions (e.g., background noise, vocal intensity, or recorder gain). SNR was calculated as 

the relative energy within utterance boundaries (per speaker), compared with the energy in 

regions exclusive of utterance boundaries for either speaker.
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Stepwise regression was performed on the entire data set in order to assess explanatory 

power through adjusted R2 as well as examine selected features. Hierarchical and predictive 

regressions were performed to compare the explanatory power of the child’s and the 

psychologist’s acoustic-prosodic features. Given the limited sample size, stepwise feature 

selection was performed for all regressions. Parameters for stepwise regression were fixed 

for the stepwise regression and hierarchical regression sections (pintro = .05 and premove = .

10), and optimized for predictive regression.

Predictive regression was completed with a cross-validation framework to assess the 

model’s explanatory power on an independent set of data; in particular, one session was held 

out for prediction, whereas the stepwise regression model was trained on all other sessions. 

The process was repeated in order to obtain a prediction for each session’s severity rating. 

Then, the predicted severity ratings were correlated with the true severity ratings. All models 

included for selection the underlying variables (psychologist identity, age, gender, and SNR) 

in order to ensure that no advantage was given to either feature set. Parameters of stepwise 

regression were optimized per cross-fold; pintro was selected in the range of [0.01, 0.19], 

with premove = 2pintro.

Results

Relationship Between Normalized Speaking Times and Symptom Severity

Figure 2 illustrates the proportion of time spent talking by each participant, as well as 

periods of silence and overlapping speech. Correlations between duration of speech and 

ADOS severity are analyzed. The percentage of child speech (audible or inaudible due to 

background noise) during this subsample of the ADOS was not significantly correlated with 

ASD severity, rs(26) = −0.37, p = .06. The percentage of psychologist speech was 

significantly correlated with ASD severity, rs(26) = 0.40, p = .03. No relationship was found 

for percentage overlap (p = .39) or percentage silence (p = .45). Thus, the data suggest a 

pattern in which more frequent psychologist speech occurs with more severe ASD 

symptoms.

Child–Psychologist Coordination of Prosody

Certain prosodic features may co-vary between participants, suggesting that one speaker’s 

vocal behavior is influenced by the other speaker’s vocal behavior, or vice versa. The 

strongest correlation between participants was seen for median slope of vocal intensity, 

rp(26) = 0.64, p < .01, as illustrated in Figure 3. This correlation was still significant at the p 

< .01 level after controlling for psychologist identity and SNR—presumably, the most likely 

confounding factors. Coordination of median jitter was not significant (p = 0.24), whereas 

coordination with median HNR was significant, rp(26) = .71, p < .001, as displayed in 

Figure 4. Median jitter and HNR capture aspects of voice quality and can be altered 

unconsciously to some degree, although they are speaker dependent. After controlling for 

psychologist identity and SNR, significance at the p = .05 level was reached for median 

jitter, rp(26) = 0.47, p = .02, as shown in Figure 5, and still existed for median HNR, rp(26) 

= 0.70, p < .001.

Bone et al. Page 13

J Speech Lang Hear Res. Author manuscript; available in PMC 2015 February 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Two other features showed significant coordination between speakers: the pitch center IQRs 

and the CPP medians. But these relations were nonsignificant when controlling for 

psychologist identity and SNR, and thus were disregarded.

Relationship Between Acoustic-Prosodic Descriptors and ASD Severity

Correlation of acoustic-prosodic descriptors with ASD severity—In this 

subsection, the pairwise correlations between the 24 child and psychologist prosodic 

features and the rated ADOS severity are presented (see Table 1). Positive correlations 

indicate that increasing descriptor values corresponded to increasing symptom severity. If 

not stated otherwise, all reported correlations were still significant at the p < .05 significance 

level after controlling for the underlying variables: psychologist identity, age, gender, and 

SNR.

The pitch features of intonation were examined first. The child’s turn-end median pitch 

slope was negatively correlated with rated severity, rs(26) = −0.68, p < .001; children with 

higher ADOS severity tended to have more negatively sloped pitch. Negative turn-end pitch 

slope is characteristic of statements, but also is related to other communicative functions 

such as turn-taking. Whether or not this acoustic feature may be associated with perceptions 

of monotonous speech is an area for further research. The child’s turn-end median pitch 

curvature showed similar correlations and could also be a marker of statements. In addition, 

the psychologist’s pitch center variability (IQR) was positively correlated with rated 

severity, rs(26) = 0.48, p < .01, as was the psychologists’ pitch slope variability, rs(26) = 

0.43, p < .05; a psychologist tended to have more varied pitch center and pitch slope when 

interacting with a child who showed more atypical behavior. However, psychologist pitch 

center and slope variability correlations were nonsignificant (p = .08 and p = .07, 

respectively) after controlling for underlying variables; therefore, these results should be 

interpreted cautiously.

Next, we considered the vocal intensity features that describe intonation and volume. 

Psychologists’ vocal intensity center variability (IQR) was positively correlated with rated 

severity, rs(26) = 0.41, p = .03. When interacting with a child whose behavior was more 

atypical, the psychologist tended to vary speech volume level more. Both the psychologist’s 

and the child’s vocal intensity slope variability (IQR) did not reach statistically significant 

positive correlation with ADOS severity (p = .09 and p = .06, respectively).

When examining speaking rate features, we observed qualitatively that some children with 

more severe symptoms spoke extremely fast, whereas others spoke extremely slow. The 

heterogeneity is consistent with the finding of no correlation between either speaker’s 

speaking rate features and the child’s rated severity.

Regarding measures of voice quality, we found several congruent relations with ADOS 

severity. Children’s median jitter was positively correlated with rated severity of ASD at 

rs(26) = 0.38 (p < .05), whereas median HNR was negatively correlated at rs(26) = −0.38 (p 

< .05); however, median CPP was not significantly correlated, rs(26) = −0.08, p = .67. As a 

reminder, jitter is a measure of pitch aperiodicity, whereas HNR and CPP are measures of 

signal periodicity, and thus jitter is expected to have the opposite relations as HNR and CPP. 
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Similar to the child’s features, the psychologist’s median jitter, rs(26) = 0.43, p < .05; 

median HNR, rs(26) = −0.37, p < .05; and median CPP, rs(26) = −0.39, p < .05, all indicate 

lower periodicity for increasing ASD severity of the child. Additionally, there were 

medium-to-large correlations for the child’s jitter and HNR variability, rs(26) = 0.45, p < .

05, and rs(26) = 0.50, p < .01, respectively, and for the psychologist’s jitter, rs(26) = 0.48, p 

< .01; CPP, rs(26) = 0.67, p < .001; and HNR variability, rs(26) = 0.58, p < .01—all indicate 

that increased periodicity variability is found when the child has higher rated severity. All of 

these voice quality feature correlations existed after controlling for the listed underlying 

variables, including SNR.

Stepwise regression—Stepwise multiple linear regression was performed using all child 

and psychologist acoustic-prosodic features as well as the underlying variables: psychologist 

identity, age, gender, and SNR to predict ADOS severity (see Table 2). The stepwise 

regression chose four features: three from the psychologist and one from the child. Three of 

these features were among those most correlated with ASD severity, indicating that the 

features contained orthogonal information. A child’s negative pitch slope and a 

psychologist’s CPP variability, vocal intensity center variability, and pitch center median all 

are indicative of a higher severity rating for the child according to the regression model. 

None of the underlying variables were chosen over the acoustic-prosodic features.

Hierarchical regression—In this subsection, we present the result of first optimizing a 

model for either the child’s or the psychologist’s features; then, we analyze whether 

orthogonal information is present in the other participant’s features or the underlying 

variables (see Table 3); the included underlying variables are psychologist identity, age, 

gender, and SNR.

The same four features selected in the stepwise regression experiment were included in the 

child-first model, the only difference being that the child’s pitch slope median was selected 

before the psychologist’s CPP variability in this case. The child-first model only selected 

one child feature—child pitch slope median—and reached an adjusted R2 of .43. Yet, further 

improvements in modeling were found (R2 = .74) after selecting three additional 

psychologist features: (a) CPP variability, (b) vocal intensity center variability, and (c) pitch 

center median. A negative pitch slope for the child suggests flatter intonation, whereas the 

selected psychologist features may capture increased variability in voice quality and 

intonation.

The other hierarchical model first selects from psychologist features, then considers adding 

child and underlying features. That model, however, found that no significant explanatory 

power was available in the child or underlying features, with the psychologist’s features 

contributing to an adjusted R2 of .78. In particular, the model consists of four psychologist 

features: (a) CPP variability, (b) HNR variability, (c) jitter variability, and (d) vocal intensity 

center variability. These features largely suggest that increased variability in the 

psychologist’s voice quality is indicative of higher ASD for the child.

Predictive regression—The results shown in Table 4 indicate the significant prediction 

of ADOS severity from acoustic-prosodic features. The psychologist’s prosodic features 
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provided higher correlation than the child’s prosodic features, rs,psych(26) = 0.79, p < .001, 

compared with rs,child (26) = 0.64, p < .001, although the difference between correlations 

was not significant. Additionally, no improvement was observed when including the child’s 

features for regression, rs,psych&child (26) = 0.67, p < .001.

Discussion

The contributions of this work are threefold. First, semiautomatic processing and 

quantification of acoustic-prosodic features of the speech of children with ASD was 

conducted, demonstrating the feasibility of this paradigm for speech analysis even in the 

challenging domain of spontaneous dyadic interactions and the use of far-field sensors. 

Second, the unique approach of analyzing the psychologist’s speech in addition to the 

child’s speech during each interaction provided novel information about the predictive 

importance of the psychologist as an interlocutor in characterizing a child’s autistic 

symptoms. Third, as predicted, speech characteristics of both the child and the psychologist 

were significantly related to the severity of the child’s autism symptoms. Moreover, some 

proposed features such as intonation dynamics are novel to the ASD domain, whereas vocal 

quality measurements (e.g., jitter) mirrored other preliminary findings.

Examination of speaking duration indicated that the percentage of time in which the 

psychologist spoke in conversation was informative; in interactions with children who have 

more severe autism symptoms, the psychologist spoke more, and the child spoke 

nonsignificantly less (p = .06). This finding may suggest that the child with more severe 

ASD has difficulty conversing about the emotional and social content of the interview, and 

thus the psychologist is attempting different strategies, questions, or comments to try to 

draw the child out and elicit more verbal responses. Similar findings about relative speaking 

duration have been reported in previous observational studies of the interactions of adults 

and children or adolescents with autism (García-Perez, Lee, & Hobson, 2007; Jones & 

Schwartz, 2009). In addition, some coordination between acoustic-prosodic features of the 

child and the psychologist was shown for vocal intensity level variability, median HNR, and 

median jitter (only after controlling for underlying variables); this gives evidence of the 

interdependence of participants’ behaviors. Vocal intensity is a significant contributor to 

perceived intonation, and HNR and jitter are related to aspects of atypical vocal quality. 

These findings suggest that, during the interactions, the psychologist tended to match her 

volume variability and voice quality to that of the child.

As predicted, correlation analyses demonstrated significant relationships between acoustic-

prosodic features of both partners and rated severity of autism symptoms. Continuous 

behavioral descriptors that co-vary with this dimensional rating of social-affective behavior 

may lead to better phenotypic characterizations that address the heterogeneity of ASD 

symptomatology. Severity of autistic symptoms was correlated with children’s negative 

turn-end pitch slope, which is a marker of statements. The underlying reason for this 

relationship is currently uncertain and needs further investigation. Children’s jitter median 

tended to increase while HNR median decreased; jitter, HNR, and CPP variability also 

tended to increase in the children’s speech with increasing ASD severity. Higher jitter, lower 

HNR, and lower CPP have been reported to occur with increased breathiness, hoarseness, 
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and roughness (Halberstam, 2004; Hillenbrand et al., 1994; McAllister et al., 1998), whereas 

similar perceptions of atypical voice quality have been reported in children with ASD. For 

example, Pronovost et al. (1966) found speakers with HFA to have hoarse, harsh, and 

hypernasal qualities. Hence, the less periodic values of jitter and HNR seen for children with 

higher autism severity scores suggest that the extracted measures are acoustic correlates of 

perceived atypical voice quality. The findings show promise for automatic methods of 

analysis, but there is uncertainty regarding which aspect of voice quality that jitter, HNR, 

and CPP may be capturing. Because the CPP measure was nonsignificant for the child, 

whereas the jitter and HNR measures were significant, further, more controlled investigation 

of voice quality during interaction is desired in future studies. The results corroborate 

findings from another acoustic study (Boucher et al., 2011), which found that higher 

absolute jitter contributed to perceived “overall severity” in samples of spontaneous speech 

of children with ASD.

Examination of the psychologist’s speech features revealed that when interacting with a 

more atypical child, the psychologist tended to vary her volume level and pitch dynamics 

(slope and center) more. This variability may reflect the psychologist’s attempts to engage 

the child by adding affect to her speech because increased pitch variability is associated with 

increased arousal (Juslin & Scherer, 2005). However, the pitch dynamic variability was 

nonsignificant (p = .08 and p = .07) after controlling for underlying variables, so this result 

should be interpreted with caution. It is also important to note that the data clearly show that 

certain relations are very significant and others should be further investigated with a more 

powerful clinical sample. Additionally, psychologist speech showed increased aperiodicity 

(captured by median jitter, CPP, and HNR) when interacting with children with higher 

autism severity ratings. This increased aperiodicity when interacting with more children who 

show more atypical behavior—together with the coordination observed between the two 

participants’ median HNR as well as their median jitter after controlling for underlying 

variables—suggests that the psychologist may be altering her voice quality to match that of 

the child. Furthermore, the psychologist’s periodicity variability (captured by jitter), CPP, 

and HNR variability—like the child’s—increased as the severity of autistic symptoms 

increased. Findings regarding voice quality are stronger for having considered several 

alternative measures.

Lastly, this study represents one of the first collections of empirical results that demonstrate 

the significance of psychologist behavior in relation to the severity of a child’s autism 

symptoms. In particular, three regression studies were conducted in this regard: stepwise 

regression, hierarchical stepwise regression, and predictive stepwise regression. Stepwise 

regression with selection from all child and psychologist acoustic-prosodic features and 

underlying variables demonstrated that both psychologist and child features had explanatory 

power for autism severity. Hierarchical-stepwise regression showed that, independently, 

both the child’s and the psychologist’s acoustic-prosodic features were informative. 

However, evidence suggests that the psychologist’s features were more explanatory than the 

child’s; higher R2 was observed when selecting from the psychologist’s features than when 

selecting from the child’s features, and no child feature was selected after choosing from 

psychologist features first. Finally, the predictive value of each feature set was evaluated. 
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The psychologist’s features were more predictive of autism severity than were the child’s 

features; although this difference was nonsignificant, the findings indicate that the 

psychologist’s behavior carries valuable information about these dyadic interactions. 

Furthermore, the addition of the child’s features to the psychologist’s features did not 

improve prediction accuracy.

Implications for Future Research, Diagnosis, and Intervention

Two important results emerged in this study: First, the psychologist’s prosody was at least as 

informative as the child’s prosody of autism severity. Second, the semiautomatically 

extracted acoustic-prosodic features taken from spontaneous interactions between child and 

psychologist were correlated with autism severity. Future research could focus on sequential 

analysis of the psychologist’s speech in order to gain more insights into the interaction 

dynamics between the child and the psychologist. For instance, it is of some interest to 

understand the point at which the psychologist makes a decision; this computation has been 

attempted in the couples therapy setting (Lee, Katsamanis, Georgiou, & Narayanan, 2012). 

Further, interaction processes such as prosodic entrainment can be computationally 

investigated in relation to expert-coded behaviors to lend deeper insights into underlying 

mechanisms (Lee et al., 2014). In addition, it would be helpful to sequentially analyze 

changes in the child’s speech and level of engagement over the course of a session and 

whether these vary with changes in the psychologist’s speech characteristics (Bone, Lee, & 

Narayanan, 2012).

Regarding the significance of the extracted acoustic-prosodic features, future research may 

investigate more specifically the relationship between prosody and overall ASD behavior 

impairments. Future research will also examine the prevalence of various prosodic 

abnormalities in children with a wider range of ASD severity and level of language 

functioning using computational techniques explored in this study but scaled to larger data 

sets. Dependencies of various prosodic abnormalities may also be examined, such as the 

effects of varying social and cognitive load throughout an interaction. Our recent 

preliminary work—which incorporates ratings of social load on the child—further 

investigates conversational quality by incorporating turn-taking and language features while 

expanding the analysis to the entire ADOS session (Bone et al., 2013). Greater 

understanding of the intricacies of atypical speech prosody can inform diagnosis and can 

lead to more personalized intervention. In addition, examination of children’s specific 

responses to varied speech characteristics in the interacting partner may lead to fine-tuned 

recommendations for intervention targets and evaluation of mechanisms of change in 

intervention.

Conclusion

A framework was presented for objective, semiautomatic computation and quantification of 

prosody using speech signal features; such quantification may lead to robust prevalence 

estimates for various prosodic abnormalities and thus more specific phenotypic analyses in 

autism. Results indicate that the extracted speech features of both participants were 

informative. The extracted prosodic features were analyzed jointly with a dimensional rating 
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of social-affective behavior, motivated by the continuity of heterogeneous ASD 

symptomatology. Regression analyses provided empirical support for the significance of the 

psychologist’s behavior in ASD assessment, an intuitive result given the dependence 

between dyadic interlocutors in general. These results support future study of acoustic 

prosody during spontaneous conversation—not only of the child’s behavior but also of the 

psychologist’s speech patterns—using computational methods that allow for analysis on 

much larger corpora. This preliminary study suggests that signal processing techniques have 

the potential to support researchers and clinicians with quantitative description of qualitative 

behavioral phenomena and to facilitate more precise stratification within this spectrum 

disorder.
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Figure 1. 
Second-order polynomial representation of the normalized log-pitch contour for the word 

drives. Curvature = −0.11; slope = −0.12; center = 0.28.
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Figure 2. 
Proportions of conversation containing psychologist and/or child speech. Sessions are 

ordered and labeled by Autism Diagnostic Observation Scale (ADOS) severity.
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Figure 3. 
Coordination of vocal intensity slope median between child and psychologist.
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Figure 4. 
Coordination of median harmonics-to-noise ratio (HNR) between child and psychologist.
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Figure 5. 
Coordination of median jitter between child and psychologist after controlling for 

psychologist identity and signal-to-noise ratio (SNR).
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Table 1

Spearman rank order correlation coefficients between acoustic-prosodic descriptors and ADOS severity.

Category Descriptor Child rs Psychologist rs

Intonation: Pitch Curvature median −0.53** −0.12

Slope median −0.68** 0.30

Center median −0.12 0.26

Curvature IQR 0.22 0.09

Slope IQR −0.03 0.43*

Center IQR 0.02 0.48**

Intonation: Vocal intensity Curvature median −0.09 −0.13

Slope median −0.31 −0.25

Center median −0.14 0.09

Curvature IQR −0.05 0.10

Slope IQR 0.36† 0.33†

Center IQR 0.18 0.41*

Speaking rate Nonboundary median −0.00 0.19

Boundary median 0.00 −0.04

Nonboundary IQR 0.22 −0.05

Boundary IQR 0.33† −0.03

Voice quality Jitter median 0.38* 0.43*

Shimmer median 0.08 0.04

CPP median −0.03 −0.39*

HNR median −0.38* −0.37*

Jitter IQR 0.45* 0.48**

Shimmer IQR −0.12 −0.03

CPP IQR 0.12 0.67***

HNR IQR 0.50** 0.58**

Note. Positive correlations indicate that increasing descriptor values occur with increasing severity. IQR = interquartile ratio; HNR = harmonics-to-
noise ratio; CPP = cepstral peak prominence.

†
p < .10.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 4

Spearman rank order correlation between predicted severity based on acoustic-prosodic descriptors and actual, 

rated ADOS severity.

Descriptors included Child prosody Psych prosody Child and psych prosody Underlying variables

rs 0.64*** 0.79*** 0.67*** −0.14

***
p < .001.
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